Communications to the Editor

Free-Radical Polymerization of Methyl Methacrylate and Styrene with C_{60}

Amanda G. Camp, Alanta Lary, and Warren T. Ford*

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078

Received June 23, 1995 Revised Manuscript Received September 6, 1995

The availability of C₆₀ in gram quantities¹ has led to wide exploration of its chemical reactivity. Many types of polymers containing C₆₀ have been prepared by attachment of C₆₀ as a side chain to preformed polymers and by inclusion of C₆₀ in the main chain,² via stepgrowth copolymerizations of a bisphenol derivative of C_{60} , 3,4 nucleophilic additions of α , ω -diamino polyethers to C_{60} , addition of living polystyrene to C_{60} , actionic polyalkylation to form an insoluble network,7 and copolymerization of C₆₀ with p-xylylene to form an insoluble solid.8 Cao and Webber9 and Bunker, Lawson, and Sun¹⁰ discovered that C₆₀ copolymerizes with styrene in bulk and in solution by thermal self-initiation and by thermal initiation with azobis(isobutyronitrile) (AIBN) or dibenzoyl peroxide. Before their work was reported, we found that both styrene (S) and methyl methacrylate (MMA) in solution initiated by AIBN form polymers with C₆₀ and that MMA gives higher yields and more thorough incorporation of C₆₀. The freeradical polymerizations are simple to perform, large amounts of C₆₀ can be incorporated, and the polymers can be used to form coherent clear films. The polymers, however, are complex mixtures, and the properties of the highly functionalized C₆₀ may be substantially altered from those of C_{60} and less substituted C_{60} derivatives.

In a typical polymerization, a sonicated solution of C₆₀ (Hoechst, >97% C₆₀) in o-dichlorobenzene (DCB) was added to the monomer. The solution was heated to 70 °C under air without stirring (MMA) or 64 °C under nitrogen with stirring (S). A DCB solution containing 5 mol of AIBN/mol of C₆₀ was added, and the solution was heated at 70 or 64 °C for 16-17 h. The solution was cooled and added dropwise to a tenfold excess of magnetically stirred hexane, diethyl ether, or methanol to precipitate the brown polymer, the mixture was filtered through a glass frit, and the solid was washed with methanol. The 5% and 10% C₆₀ polymers contained material that passed through filters, and consequently the solid was precipitated by centrifugation, the liquid was decanted, and the precipitate was washed with methanol, sonicated, and centrifuged again. The 1% C₆₀PMMA and 1% C₆₀PS samples were reprecipitated into methanol; the 5% and 10% C₆₀ polymers were not purified further. All samples were dried in vacuum at 80 °C. Compositions of the polymerization mixtures, yields, and descriptions of the polymers are reported in Table 1. Repetition of the 1% C₆₀PMMA synthesis twice

* To whom correspondence should be addressed. Phone 405-744-5946, fax 405-744-6007, e-mail wtford@osuunx.ucc.okstate.edu.

under air, once under argon, and twice in evacuated sealed tubes produced yields of 67, 40, 62, 88, and 86%, respectively, with $M_{\rm n}$ in the range 16 200–19 500. We attribute the lower yields to evaporation of MMA during synthesis and to physical losses during filtration of the precipitated polymers.

Molecular weights of the polymers were analyzed by gel permeation chromatography (GPC) in tetrahydrofuran (THF) solutions with linear polystyrene standards. All of the PMMA samples and the 1% C₆₀PS sample were completely soluble in THF, but the 5% and 10% C₆₀PS samples were only partly soluble, and only the soluble part was analyzed. All C_{60} polymers were detected by UV absorption at 249 nm, where PS and C₆₀ absorb, and the C₆₀PS samples also were detected at 400 nm, where only C₆₀ absorbs. The UV-visible absorption spectra of the C₆₀PS samples were like those previously reported,9,10 and in the spectra of the C₆₀-PMMA samples the absorbance decreased from a maximum at about 220 nm, with shoulders in the 250-340 nm range, to none at 820 nm, the longest wavelength measured. The molecular weight distributions of PS control samples, prepared under exactly the same conditions but containing no C₆₀, are narrower than those of the polymers containing C₆₀. The PS chromatograms detected at 249 nm have long retention time peaks of impurities that were not removed by two precipitations into methanol. These impurities contain no C_{60} , for they do not absorb at 400 nm. The starting C₆₀ was not detected in any chromatogram. The molecular weight distributions of the PS samples detected at 400 nm are skewed to shorter retention time than those detected at 249 nm, indicating that the higher molecular weight components have higher C₆₀ content. Number-average and weight-average molecular weights are reported in Table 2. Molecular weights of all samples are low because of the large amounts of AIBN employed (5 mol of AIBN/mol of C₆₀; Table 1), as shown by decreasing molecular weights of the PS control samples with increasing concentration of AIBN in the polymerization mixtures. The isolated yields of the control polymers were higher than those of the C₆₀ polymers, consistent with less physical loss of low molecular weight components during isolation of higher molecular weight polymers.

Although all of the UV-visible spectra of the polymers in solution are qualitatively alike at >300 nm, there are marked differences in extinction coefficients, indicating that the C_{60} content increases more than in direct proportion to the amount of C_{60} used in the polymerization. If the 1% C_{60} PMMA sample is assumed to contain 1% C_{60} by weight and all samples have the same absorptivity per mole of C_{60} incorporated, the C_{60} contents of the other samples measured by absorbance at 400 nm are 5% C_{60} PMMA, 5.9%; 10% C_{60} PMMA, 26%; and 1% C_{60} PS, 5.7%.

NMR spectra of the polymers containing the lesser amounts of C_{60} are not significantly different from the spectra of the control samples. The ^{13}C NMR spectrum of the 10% $C_{60}PMMA$ shown in Figure 1 is most

Table 1. Conditions of Polymerization of C₆₀ with MMA and Styrene

polymer	monomer (g)	AIBN (mg)	C ₆₀ (mg)	DCB (mL)	% yield ^a	appearance
1% C ₆₀ PMMA	2.44	33	24.4	5	67 (80)	light brown powder
5% C ₆₀ PMMA	2.50	143	125	8	65 (82)	dark brown chunks
$10\% C_{60}$ PMMA	2.51	285	250	16	5(57)	dark brown fine solid
$1\% C_{60}PS$	2.44	28	24.5	5	6 (33)	light brown chunks
5% C ₆₀ PS	2.51	148	129	8	6 (39)	black fine solid
$10\% \ \mathrm{C}_{60}\mathrm{PS}$	2.51	293	259	16	8 (4)	black fine solid

^a Based on combined weight of monomer and C₆₀. Percent yields of control polymers prepared by identical procedures with no C₆₀ are in parentheses.

Table 2. Properties of C₆₀ Polymers

${ t polymer}^a$	$m{M}_{ m n}{}^b$	$\boldsymbol{M}_{\mathbf{w}}{}^{b}$	T _g (°C)	
1% C ₆₀ PMMA	18200	35600	117	
control	c	c	120	
5% C ₆₀ PMMA	4200	8000	112	
control	c	c	119	
10% C ₆₀ PMMA	2250	3200	d	
control	c	c	115	
1% C ₆₀ PS	9780	24700	99	
control	16400	26700	95	
$5\% C_{60}PS$	900	1700	d	
control	3960	5720	c	
10% C ₆₀ PS	1810	2500	d	
control	2980	3630	c	

^a Control polymers were prepared identically, except no C₆₀ was used. b By GPC with UV detection at 249 nm. c Not measured.d No $T_{\rm g}$ was detected between 40 and 157 °C.

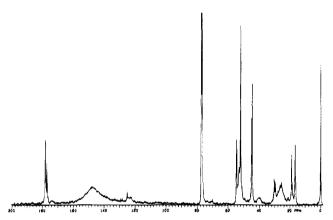


Figure 1. ¹³C NMR spectrum of 10% C₆₀PMMA in CDCl₃ with tetramethylsilane reference. Signals due to C₆₀ and AIBN carbon atoms are explained in the text. Signals due to PMMA are at 15-20, 44-56, and 175-180 ppm.

informative. In addition to signals due to PMMA, it contains broad bands at 22-32 ppm from methyl carbons of AIBN derivatives, 38-42 ppm from quaternary carbons of AIBN derivatives, 120-126 ppm from cyano carbons of AIBN derivatives, and 126-160 ppm from unsaturated carbon atoms of C_{60} derivatives. The band for saturated carbon atoms of substituted C₆₀ is likely at 70-76 ppm. These assignments were confirmed by comparison with a spectrum of a sample prepared by reaction of the same amounts of C_{60} and AIBN in DCB in the absence of monomer.

Differential scanning calorimetric measurements of the glass transition temperatures of the polymers reported in Table 2 show that 1% C60 has only a small effect on $T_{\rm g}$, and higher C_{60} contents make $T_{\rm g}$ indetectable. Thermal gravimetric analyses (TGA) of the PMMA samples in Figure 2 show that increasing amounts of C₆₀ lower the temperature of onset of weight loss and increase the weight of residue remaining at high temperature, which must be mostly C₆₀ or nonpolymeric C₆₀ derivatives. The amount of residue from the 10% C_{60} -PMMA at 540 K correlates with the high C₆₀ content

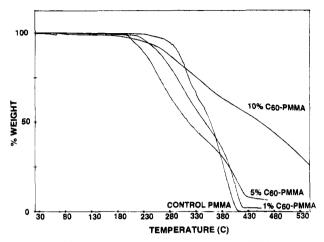


Figure 2. Thermogravimetric analyses of C₆₀PMMA samples heated under nitrogen at 40 °C min⁻¹.

indicated by its UV-visible and ¹³C NMR spectra. The lower temperature onset of weight loss in TGA experiments may be due to homolysis of C₆₀-C₆₀ bonds, which is the accepted interpretation for temperature-dependent ESR spectra of dimers of alkyl radical adducts of C₆₀. 11 Results of TGA of the PS samples (not shown) are similar to those of the PMMA samples.

Our polystyrenes containing C_{60} are similar to those of Cao and Webber⁹ and of Bunker, Lawson, and Sun.¹⁰ Like theirs, our THF-soluble polymers contain no unreacted C₆₀, have broad molecular weight distributions, have molecular weights that decrease with increasing amounts of C₆₀, and have UV-visible spectra indicative of mixtures of C₆₀ derivatives. The weight percents of C₆₀ in the polymers exceed those in the starting polymerization mixtures. MMA polymerizes to higher yield of more uniform C₆₀-containing polymers than does styrene. The 1% C₆₀PMMA sample forms a clear brown film when coated onto glass from THF solution, and THF solutions of 50/50 mixtures of the 5% C₆₀PMMA and 1% C₆₀PS with higher molecular weight PMMA and PS also form clear films.

We speculate that the polymers are formed by multiple additions of radicals to C_{60} to give mixtures having many different numbers of oligomeric chains bound to C_{60} and many constitutional isomers of multiply substituted C_{60} cores. Thus the C_{60} structures are more highly substituted than the so-called "flagellenes"12 formed by addition of living anionic polystyrene to C_{60} . This interpretation is supported by the broad bands of signals from C₆₀ and from AIBN fragments in the ¹³C NMR spectrum. Multiple addition of radicals such as benzyl and tert-butyl to C_{60} is well known. $^{13-16}$ Rate constants for addition of alkyl radicals to C₆₀ are reported to be $10^7 - 10^9 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$, $17 - 20 \,\mathrm{much}$ higher than rate constants for propagation during free-radical polymerization of styrene and of MMA. Consequently, the C_{60} is consumed early in the polymerization, the C_{60} derivatives formed by radical addition react with more radicals to give multiply substituted C₆₀ units, and longer PMMA and PS chains are formed only after the C_{60} is so highly substituted that rates of addition of radicals to the C_{60} units are slowed down. Termination would occur mainly by coupling of two C60 radicals, because the concentration of C₆₀ radicals during polymerization is much higher than the concentration of monomer-ended radicals. Experiments to test mechanisms of polymerization and to determine better the structures of the polymers are in progress.

Acknowledgment. This research was supported by National Science Foundation Grant DMR-9024858. We thank S. E. Webber and Y. P. Sun for copies of their manuscripts before publication.

References and Notes

- (1) Kratschmer, W.; Lamb, L. D.; Fostiropaulus, K.; Huffman, D. Nature 1990, 347, 354.
- (2) For reviews, see: (a) Geckeler, K. E. Trends Polym. Sci. 1994, 2, 355. (b) Hirsch, A. Adv. Mater. 1993, 5, 859.
- Shi, S.; Khemani, K. C.; Li, Q.; Wudl, F. J. Am. Chem. Soc. 1992, 114, 10656.
- (4) Berrada, M.; Hashimoto, Y.; Miyata, S. Chem. Mater. 1994,
- (5) Manolova, N.; Rashkov, I.; Van Damme, H.; Beguin, F. Polym. Bull. 1994, 33, 175.

- (6) Samulski, E. T.; DeSimone, J. M.; Hunt, M. O., Jr.; Menceloglu, Y. Z.; Jarnagin, R. C.; York, G. A.; Labat, K. B.; Wang, H. Chem. Mater. 1992, 4, 1153.
- Olah, G. A.; Bucsi, I.; Lambert, C.; Aniszfeld, R.; Trivedi, N. J.; Sensharma, D. K.; Prakash, G. K. J. Am. Chem. Soc. 1991, 113, 9387.
- (8) Loy, D. A.; Assink, R. A. J. Am. Chem. Soc. 1992, 114, 3977.
 (9) Cao, T.; Webber, S. E. Macromolecules 1995, 28, 3741.
- (10) Bunker, C. E.; Lawson, G. E.; Sun, Y. P. Macromolecules 1995, 28, 374.
- (11) Morton, J. R.; Preston, K. F.; Krusic, P. J.; Hill, S. A.; Wasserman, E. J. Am. Chem. Soc. **1992**, 114, 5454.
- Wignall, G. D.; Affholter, K. A.; Bunick, G. J.; Hunt, M. O. Jr.; Menceloglu, Y. Z.; DeSimone, J. M.; Samulski, E. T. Macromolecules 1995, 28, 6000.
- (13) Krusic, P. J.; Wasserman, E.; Keizer, P. N.; Morton, J. R.; Preston, K. F. Science 1991, 254, 1183.
- Krusic, P. J.; Wasserman, E.; Parkinson, B. A.; Malone, B.; Holler, E. R., Jr.; Keizer, P. N.; Morton, J. R.; Preston, K. F. J. Am. Chem. Soc. 1991, 113, 6274.
- (15) McEwen, C. N.; McKay, R. G.; Larsen, B. S. J. Am. Chem. Soc. 1992, 114, 4412.
- (a) Morton, J. R.; Preston, K. F.; Krusic, P. J.; Hill, S. A.; Wasserman, E. J. Phys. Chem. 1992, 96, 3576. (b) Morton, J. R.; Preston, K. F.; Krusic, P. J.; Wasserman, E. J. Chem. Soc., Perkin Trans. 2 **1992**, 1425.
- (17) Dimitrijevic, N. D.; Kamat, P. V.; Fessenden, R. W. J. Phys. Chem. 1993, 97, 615.
- (18) Guldi, D. M.; Hungerbühler, H.; Janata, E.; Asmus, K.-D. J. Chem. Soc., Chem. Commun. 1993, 84.
- (19) Walbiner, M.; Fischer, H. J. Phys. Chem. 1993, 97, 4880.
- (20) Guldi, D. M.; Hungerbühler, H.; Janata, E.; Asmus, K.-D. J. Phys. Chem. 1993, 97, 11258.

MA9508921